

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty	:	Ms. Nidhi
Discipline	:	Mechanical Engineering
Semester	:	7 th
Subject	:	Operation Research (ME- 405-F)
Lesson Plan Duration	: (fro	m Aug., 2020 to Nov., 2020)

** Work Load (Lecture) per week (in hours): Lectures-02

Week	Theory		
-	Lecture Day	Topic (including assignment/test)	
1^{st}	1 st	Introduction to OR	
(01/08/20)		O.R. model building –Types & methods	
	2 nd	Applications in industry. Concept on O.R. model building –Types & methods.	
2 nd	1 st	Linear Programming (LP):	
(08/08/20)		Programming definition, formulation	
	2 nd	solution- graphical	
3 rd	1 st	Simplex Gauss-Jordan reduction process in simplex method.	
(15/08/20)		ASSIGNMENT-1	
	2 nd	BIG-M methods computational, problems.	
4 th	1 st	Deterministic Model	
(22/08/20)		Transportation model-balanced & unbalanced	
	2^{nd}	North west rule, Vogel's Method, least cost or matrix minimal	

MERI College of Engineering and Technology (MERI - CET)

5^{th}	1^{st}	
(29/08/20)	_	Stepperg stone method
()		ASSIGNMENT-4
		ADDIGINIVIEIN 1-4
	2^{nd}	Duality, PRIMAL-DUAL relations-its solution, shadow price, economic
	2	interpretation, dual-simplex
		interpretation, dual-simplex
6 th	1 st	Dest antimative & consistivity analysis problems
(05/09/20)	1	Post-optimality& sensitivity analysis, problems.
(03/09/20)		
	2^{nd}	Waiting Line Models
		Introduction, queue parameters, M/M/1 queue, performance of queuing
		systems, applications in industries, problems
		systems, upproutons in industries, problems
7 th	1 st	Project Line Models
(12/09/20)	-	Network diagram, event, activity, defects in network, PERT
(12/05/20)		
	2 nd	
	2	CPM, float in network, variance and probability of completion time, project
		cost- direct, indirect, total
8 th	1 st	Optimal project cost by crashing of network, resources leveling in
U U	1	
(19/09/20)		project, problems.
		ASSIGNMENT-5
	2^{nd}	Simulation
		Introduction, design of simulation, models & experiments,
41.		
9 th	1^{st}	
(26/09/20)		Process generation, time flow mechanism, Monte Carlo methods-
		its applications in industries, problems.
	2 nd	Decision Theory
	2	Decision process, SIMON model types of decision making environment-
		certainty, risk, uncertainty, decision making with utilities, problems.